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New Error Coefficients for Estimating Quadrature 
Errors for Analytic Functions 

By Philip Rabinowitz and Nira Richter 

Abstract. Since properly normalized Chebyshev polynomials of the first kind T,(z) satisfy 

(Tm, Tn) = f Tm(z)Tn(z) 1i - z-h112Idz1 _ 8mn 

for ellipses E, with foci at ?1, any function analytic in E, has an expansion,f(z) = E ajT,(z) 
with a. = (f, T,n). Applying the integration error operator E yields EJ =E anE(Tn). 
Applying the Cauchy-Schwarz inequality to E(f) leads to the inequality 

IE(f I1 < E lanl E IE(T.) 12 = I If I III JEJ 12. 

IEII can be computed for any integration rule and approximated quite accurately for 
Gaussian integration rules. The bound for IE(f)I using this norm is compared to that using 
a previously studied norm based on Chebyshev polynomials of the second kind and is 
shown to be superior in practical situations. Other results involving the latter norm are 
carried over to the new norm. 

1. Davis and Rabinowitz [6], following the work of Davis [3], developed a new 
method for bounding the truncation error in the numerical integration of functions 
analytic over the interval of integration, standardized to [-1, 1]. This method was 
based on the fact that every such function could be continued analytically into a 
region enclosed by one of a family of confocal ellipses e, with foci at i 1, where 
p = a + b, a is the semimajor axis of Ep, and b = (a2 - 1)1/2 is the semiminor axis. 
Error coefficients o(R, p) were computed for various values of p and for several inte- 
gration rules R, where 

n 
(1) R(f) 3 E wif(xi) 

is determined by a particular choice of weights wi and abscissas xi, i = 1, * * , n. 
The o(R, f) were computed using the Chebyshev polynomials of the second kind 

U,,(Z) which are orthogonal over the interior of ep with respect to the inner product 

(2) (f, g)p =f f(z)g(z) dx dy. 
Ep 

They are given explicitly by t' e formula 

(3) a2(R p) 4 E (k + 1)[I +(_1)k - 1 UA(XJ] ( 
2k+2 -2P-2 

Received November 26, 1968, revised December 18, 1969. 
AMS Subject Classifications. Primary 6555, 6580. 
Key Words and Phrases. Error coefficients, error in numerical integration, analytic functions, 

Chebyshev polynomials, complete orthonormal set, error estimates, trapezoidal rule, Simpson rule, 
norm of error functional, interpolatory quadrature. 

Copyright 0 1971, American Mathematical Society 

561 



562 PHILIP RABINOWITZ AND NIRA RICHTER 

The error E(f) in the nuLmerical integration of a particular function f(x) 

(4) E(f)- f (x) dx - R(f) 

can then be bounded 

(5) jE(f)j o-(R, p) IIfjjP, 

where f j ip2 = (f, f). p can take on any value 1 < p < p, where p is the largest value 
of p such that f(x) is analytic in Ep. There is usually a value of p, p*, such that 

a(R, p*) IIfI10* < a(R, p) IIfjII 

for all p, 1 < p < p, so that 

IE(f)I < a(R, p*) IIfjp* 

In practice, Ijf II is usually estimated by (7rab)112M,(f), where M,(f) = max E,p If(z)! 
and 7rab equals the area of the interior of Ep. Hence, the bound on E(f) takes the form 

(6) 1 E(f) 1 ? (rab)'"2 o(R, p)M (f). 

In the present work, we introduce new error coefficients r(R, p) using the Chebyshev 
polynomials of the first kind Tn(z), which are orthogonal on cP with respect to the 
inner product 

(7) (g)-f f(z)g(z) IdzI 
(7)(f g) =A11 _ 211/2 

These coefficients will turn out to give sharper bounds on IE(f)j when used in the 
form similar to (6). In fact, for an integration rule whose error term starts with Cf (') Q) 
use of r(R, p) will give error bounds which are asymptotically of magnitude (n + 1/2 

times the error bound (6) as p tends to infinity. 
Since the original work involving the c(R, p) led to further developments by Davis 

[4], Hiimmerlin [7], Barnhill and Wixom [1], and others, we developed corresponding 
results for the r(R, p). Following the example of Stroud and Secrest [11], we computed 
r(R, p) for various Gaussian integration rules and selected values of p. However, 
we do not give a table of values but, instead, give a simple expression which, in almost 
all cases, overestimates r and with an error of less than 10%. We do give a table of 
coefficients useful for estimating the error in using the composite trapezoidal and 
Simpson rules, similar to that given by Hammerlin [7]. Finally, we discuss some new 
rules which minimize r(R, p) similar to what Barnhill and Wixom did with respect 
to o(R, p). 

2. Let L2(Ep) denote the class of functions f(z) which are single-valued and anla- 
lytic inside ep, such that 

(8) 2IfII2 = f I1(z)12 11 _ Z21-1/2 IdzI 

is finite. For any two functions in L2(ep), we can define an inner product (f, g)p by (7). 
The polynomials 
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/2\ 1,/2 W 2)12nZ (9) Pn(z) (-) (p ? p )"Tn(z) 

form a complete orthonormal set with respect to (7) [5, p. 240]. Here, Tn(z) = 
cos [n arc cos z], n = 0, 1, 2, * - *, are the Chebyshev polynomials of the first kind. 
Every function f(z) in L2(Ep) can be expanded in a Fourier series 

co 

(10) f(z) E anp(z), 
n-0 

where an = (f, PA) and the convergence is uniform and absolute in any closed subset of 
E,. Moreover, we have 

(11) iilP = ?2 jan12. 
n=o 

Let B be a bounded linear functional over L2(Ep). Then 

(12) 1 2il = 
12 

n=O 
anid, for all f EE L(c-p), 

(13) IE(f)j ? jEjj,P ljflj,. 

In the present case, the functional of interest is the error in numerical integration 
I n 

(14) E(f) = f J(x) dx - wE wf(x ) = I(f) - R(f). 

In this case, we write r(R, p) = I JEl IP and, in view of (9) and (12), we have 

(15) 'r (R, p) = j (Ps + P2k I E(Tk) 2. 
71* k-o 

Since I(Tk) = 2(1 - k2)-' for k even and I(Tk) = 0 for k odd, we can compute r2 
in terms of the weights and abscissas of the rule R as 

co ~~~~~~n 2 
(16) R2(, p) = E (2k + -2k [I(Tk) - L Wi Tk(Xi) 

1 k=O i81 
If R(f) is an integration rule which is exact for polynomials of degree < m, this reduces 
to 

(17) 2(R, p) = (22k + p-2k)-1 2- E WiTk(x)] 

If, furthermore, R(f) is a symmetric rule exact for polynomials of degree <2m, we 
have 

(18) r2(R, p) = E ( 4k + P-4k)-[1 -2 - W WT2k(xi)j 
1rk-m - k i-i 

Using formula (18), we computed values of r(G", p) for values of n and p similar to 
those given by Stroud and Secrest [11] and, in Fig. 1, we give a graph for the r(Gn, p) 
similar to the graph in [11] for the a(GX, p), where Gn denotes the n-point Gauss 
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n (number of points) 

c 32 64 96 128 

-40 
4 N 

-40 ~ ~ ~ ~ ~ ~ 

Fig. I -r(Gn,P) as a function of p and n. 

- - calculated . 
--- extrapolated 

integration rule. However, we do not list the values computed and, instead, g'ive the 
following expression as an estimate for T(Gn, P): 

-r(G., p) I2 n [ + l + 1)] 

This estimate, which we shall justify immediately, turned out to overestimate Tr for 
all pairs (n, p), in the table in [II] except for p = 1.093 5 and n = 2, 3 where the true 
values of r were 1.400 and 1.084 and the estimates gave 1.355 and 1.08 1, respectively. 
(Note that we use here p = a + b whereas in [I11] p = (a + b )2 .) The maximum 
amount by which it overestimated r(Gn, p) was by 10%o. For small p, the error was 
about S5O, while for p > 1.8 and n > 20, the error was less than l1%. 

This estimate is based on the work of Nicholson et al. [8] who showecl that 

[(2n - 1)(2n + 3)- 

where 

C. =EG(T2n)- 1-3 3-5 * - (2n - I).(2n + 1) 2-244**(n*2) <7 

and that lm , EG,,(T2.+21) = for all k > 1. Hence, we can estimate' r2(G., p) by 
the first two terms in (I18), 
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[+(n(2n + 1) 121 
2 2G, P) jpn+ (2n - 1)(2n + 3)JJ Ir (G,, p) Cn 4n +4+ + 4n- 

i r I 
1 (I + 1/2n)2 ] 

< 4n + 4 n4+ 

Therefore 

r(Gn, P) (2)12n [1 + (1 +4/2n)2]1/2 

< 1(2) 
1i1 (I + 1/2n)2] 

which is our desired estimate. Here, we used the elementary inequality (1 + x)1'2< 
1 + x/2 for x > 0. An alternative inequality (1 + x2)1/2 < 1 + x leads to the simpler 
expression 

(2 2n [ p2( + 2 n) 

but this is not as accurate as the one chosen. We should point out that the estimate 
is for the theoretical value of r. For practical use, r(R, p) should generally be computed 
using (15). See Rabinowitz [9]. 

In using (13) to estimate the error, we must have a way to compute [tfi P. There 
are several ways of estimating I If I I, which are similar to the methods for estimating 
the norm of f with respect to (2) given in [6]. The most accessible method is to write 

(19) j|ffj 112 max 1f12 
1 J dzI = 2rMp(f) 

2 

I Z21 

so that 

(20) jjfjjI, < (2r)1/2M (f) 

We now have two estimates for jE(f)I in terms of M,(f), one of the form 

(21) IE(f)j < (7rab)"12a(R, p)Mp(f) 

and the other, of the form 

(22) IE(f)I < (27r)1/2 r(R, p)M (f). 

We now state the following result: 
THEOREM. Let R(f) be an integration rule which has an error term of the form 

E(f) = Cf"f)Q() + terms involving derivatives of order > n, C 5 O, -1 < t _ 1. 
Then the ratio of the right-hand side of (22) to that of (21) tends to (l/(n + 1))1/2 as p 
tends to infinity, i.e., 

(23) urn (2 '~~~~1/2 r(R, P) _ 
1/2 

) p ab! a(R, p) (n + iI 

Proof. Consider the expression 

(24) r(R, p = 2 r2(R, p) ab a (R, p)' 
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for large p. Since a 2 (p + p-1), b p-= '- we have ab ' p'. Furthermore, 

r2(R, 2 E(T)j2 
7r p 

and 

4~~~~~~~~ 
a' (R, p) (n + 1) E(nU)2 

p 

Hence, 

r(R, ) 4 p)E(T 2 
(n+ 1) I E( U.)I 

Now, since E(f) Cf Q'(t) + * , we have 

E(T.) = C2 ln! and E(Un) = 
C2'n!.- 

Hence, r(R, p) -- l/(n + 1), which proves the theorem. 
Values of r1"2(GX, p) were computed for different values of n and show that the 

convergence to (1 /(2n + 1))1/2 is quite rapid. The above theorem was proven for the 
special case of Gauss-Legendre quadrature by Chawla [2]. 

3. In this section we shall follow Hiimmerlin [7] and compute new error co- 
efficients r*(T, p) and r*(S, p) for the composite trapezoidal and Simpson rules, 
respectively. Although it is possible to compute r(R, p) for any particular trapezoidal 
or Simpson rule containing n subintervals, nevertheless it is impractical to tabulate 
such values in view of the range of n. Hence, it is desirable to have error coefficients 
independent of n, which, when multiplied by a suitable function of n, depending on 
the rule, give values of use in bounding the integration error. 

In the trapezoidal case, the error estimate takes the form 

(25) IE(f)l < h2r*(T, p) llfllp, 

while in the Simpson case it is 

(26) IE(f)I < h4r*(S, p) jlfliP, 

where h- 2/n, the length of the subinterval chosen. We shall sketch the computation 
of r*(T, p) since all the details are parallel to those given in [7] for the corresponding 
case. The considerations for r*(S, p) are similar and need not be given. 

In the trapezoidal case, we have by the Euler-Maclaurin formula that 

(27) E(T2k) = -a2,kh 2 + a4, kh4- 

where 

=B2, [ T2 2i-1)( ) + T7k2j'i(- 1)] 2,k (2j)! kk 

and 

= 2(-)'-(2) n-2 i 
-i 27r) yt- 
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are the Bernoulli numbers. We can show that for I < k ? K and for any h, 

(28) E(T2k) kh 

so that, by (15), 

(29) 2 T(T, p)2< 4k 2 4 + E I ( T2k)V + 2X 
k- p4 k=K+l P4 p~ 

Choosing K so that 2/2/1 < 10-4 we then have to 3-figure accuracy 

(K 
2 \ 1/2 

,r(T, 1)) 
2 

h Z 4k 
A: 

h 2r*(T, p), ir k-1P --P / 

where 
K 2 1/2 

r*(T, p)= 4k E k_) 
k=1 P +P 

Similarly, we have 

(31) (S' ~~~~P) ( E 4k2 k-Oh 

where 

2,k- 34! ( - 2)B(TB (1 - 

is the coefficient of h4 in the error expansion 

E8(T2k) = 12,kh + 33,kh +? 

To show that (28) holds, we consider three ranges. In the range 1 < n ? n,(k), 
we have 

n 
2 

IE(T2*) | - - h I T2k(-l + hi) ? _ + 2 ? + 2 /< . 4k I i=O 4k-I 

For n,(k) < n < n2(k), we computed E(T2k) exactly and verified that (28) holds for 
k ? K. For n2(k) < n < co, we can prove that a4, kh4 < 2a2 kh2 and that a2r+2, kh2r+2 < 

a2r kh2r, for r > 2, which again shows that (28) holds. The proof follows that given 
by Hammerlin for the case of U27. Thus, for the particular values of k, I < k < K, 
for which we computed E(T2k), we know that (28) holds, which is all that we need. 
The values r*(T, p) and r*(S, p) are given in Table 1 for various values of p. 

4. For each integration rule R and each value of p, (15) defines the value of the 
norm of the error functional E(f). The question then arises to find particular rules 
which minimize the value of T. This has been done by Barnhill and Wixom [1] with 
respect to the norm a for two different cases, and we do the same for F. In the first 
case, the abscissas are held fixed and the weights are chosen which minimize r. In 
the second case, both the abscissae and the weights of an n-point rule are allowed to 
vary so as to minimize r. In both cases, it is possible to impose constraints on the 
rules such as the constraint that the rules integrate constants exactly, i.e., E"=l wi = 2. 
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We computed unconstrained minimum norm rules for n = 2, 3, 4 and various 
values of p and similar rules for fixed abscissae. We also computed corresponding 
rules subject to the constraint that Ewi = 2. These rules are essentially of no prac- 
tical interest so that we shall not list them here. From the theoretical point of view, 
their asymptotic properties are of interest and these are discussed in [10]. For the 
present, we remark that the values of the minimum norm I I I are about half those 
of r(G., p) for small values of p while, for large values of p, they are almost equal, and 
the abscissae and weights of the minimum norm rules approach those of the corre- 
sponding Gaussian rule. It is an easy matter to prove that, for any n, the limit as p 
tends to infinity of any minimum norm rule is the n-point Gaussian rule. The proof 
is based on the fact that for large p, 

22 IE(Tk) 12 2R ) 2R pk 2 
7r p 

where k is the first integer such that E(T.) # 0. For the n-point Gaussian rule, k = 2n 
while for any other rule, k < 2n. Hence, any rule which minimizes r must tend to G". 

5. In this section we shall extend some results of Davis [4] on interpolatory 
quadrature to the space L2(ep). Consider a scheme of quadratures of the form 

1 ~~~~n 
(32A f (x) dx rE j Wnkf(Xnk) = In(f), n = 1, 2, * . 

k=O 

It is said to converge uniformly in L'2(B) if, given E > 0, there exists no = no(e) 
such that for all f C L'2(B) and n > no, IEn(f)I = IlL1 f(x) dx - I.(f)I _ elIflI. 
Here L'2(B) is the set of functions analytic within the region B containing [-1, 1] 
such that ff.B If I2 dx dy is finite, in which case the integral equals I If I 12. Davis proved 
that a necessary and sufficient condition that (32) converged uniformly in L'2(B) is 
that lim, IE, I 1/'2 = 0. A similar result can be shown to hold for L2(B), the set of 
functions analytic within B such that fB If(Z)1211 _ z2 1-l2 Idzi is finite, where 1111 12 iS 

defined accordingly. 
Davis then showed that a necessary and sufficient condition that (32) converge 

uniformly in L'2(ep) is that 

(33) ~~~~~~4 coEl( Uk) 12 (33) lim - E (k + 1) 2k+2 n( k)k = ? 
n co 7r kO P P 

A similar result holds for L2(e ), with (33) replaced by 

2 co 
(34) lim r 2k tE-( k = 

n co 7r k-0 P + P 

Let us now define an interpolatory quadrature scheme as one for which En(f) = 0 
if f is a polynomial of degree _ n, and let us set Mn = k_O WIn ? 2. Then Davis 
showed that a sufficient condition that an interpolatory quadrature scheme converge 
uniformly in L'2(ep) is that limn,o Mnn312pVn = 0. For L2(ep), the condition is slightly 
weaker, as given in the following theorem. 

THEOREM. Let lim,,o~ M"p-n = 0. Then the interpolatory quadrature scheme 
converges uniformly in L2( ep). 
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a p r*(p, T) r*(p, $ 
1.01 1.152 1.08(1) 
1.02 1.221 4.56(0) 
1.03 1.277 2.75 
1.04 1.326 1.93 
1.05 1.370 1.46 1.83(2) 
1.06 1.412 1.17 1.02 
1.07 1.451 9.63(-1) 6.17(1) 
1.08 1.488 8.17 4.01 
1.09 1.524 7.07 2.75 
1.10 1.558 6.21 1.96 
1.12 1.624 4.97 1.09 
1.14 1.687 4.12 6.65(0) 
1.16 1.748 3.51 4.34 
1.18 1.806 3.04 2.98 
1.20 1.863 2.68 2.13 
1.25 2.000 2.05 1.05 
1.30 2.131 1.66 5.89(-1) 
1.35 2.257 1.38 3.63 
1.40 2.380 1.18 2.39 
1.45 2.500 1.03 1.65 
1.50 2.618 9.11(-2) 1.19 
1.60 2.849 7.36 6.80(-2) 
1.70 3.075 6.14 4.24 
1.80 3.297 5.23 2.83 
1.90 3.516 4.53 1.99 
2.00 3.732 3.98 1.45 
2.20 4.160 3.16 8.45(-3) 
2.40 4.582 2.58 5.37 
2.60 5.000 2.16 3.63 
2.80 5.415 1.83 2.57 
3.00 5.828 1.58 1.89 
4.00 7.873 8.60(-3) 5.75(-4) 
5.00 9.900 5.43 2.54 
6.00 11.920 3.75 1.41 
7.00 13.928 2.74 9.02(-5) 
8.00 15.937 2.09 6.38 
9.00 17.944 1.65 4.80 

10.00 19.950 1.34 3.78 
20.00 39.975 3.33(-4) 8.91(-6) 

TABLE 1. Values of r*(p, R) for various values of p and for the trapezoidal (7) and 
Simpson (S) rules. 
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Proof. We have 

I + 
k + 2 

I |E 1 12 = C 
I - 

2k -2k 

Sine 2k < 2k + p-2k 2 2k h 

2 n 2 

IIEIIE 
co k 2 

21 
+ 

j 1wnj ITk(xfl)I] 
C2 < i=o 

k-n+1 p 

co@ 2k 
2 

+M)p2k < [4 + 4M1n + 2 
co 

21 

AAA ~-2n 32n 22n C -2 
[4 + 2 + Mn] - C3p2n + C4Mn-2p2n + C5Mj2-.D n n p 

Therefore, lim . Mnpn = 0 implies lim,. I JE1 12 = 0. For Newton-Cotes integra- 
tion rules, 

M < 4(1 + n)2 + 4(1 + e,) 
n n(log n)2 n log n 

where 5n, en -O 0 as n - co. The condition of the above theorem then holds for 
p 2 2. Therefore, the Newton-Cotes quadrature scheme converges uniformly in 
L2(e,) whenever p 2 2. Davis' analogous result for L'2(e,) holds with p > 2. 
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